Uranium, radioactivité et rayonnement ionisant

Un diaporama

préparé pour le Symposium sur le

Nucléarisation de l'Afrique

Johannesburg, Afrique du sud le 16 novembre 2015

Gordon Edwards, Ph.D., Président, Regroupement pour la surveillance du nucléaire

courriel: ccnr@web.ca

www.ccnr.org

La radioactivité est une forme d'énergie nucléaire

Tous les atomes ont un centre minuscule qu'on appelle LE NOYAU [en anglais : « nucleus »] Un ou plusieurs électrons orbitent autour de lui.

L'énergie chimique n'implique que les électrons.

L'énergie chimique n'implique que les électrons.

L'énergie nucléaire provient directement du noyau – elle est des millions de fois plus puissante que l'énergie chimique.

Première leçon


Un atome radioactif est instable

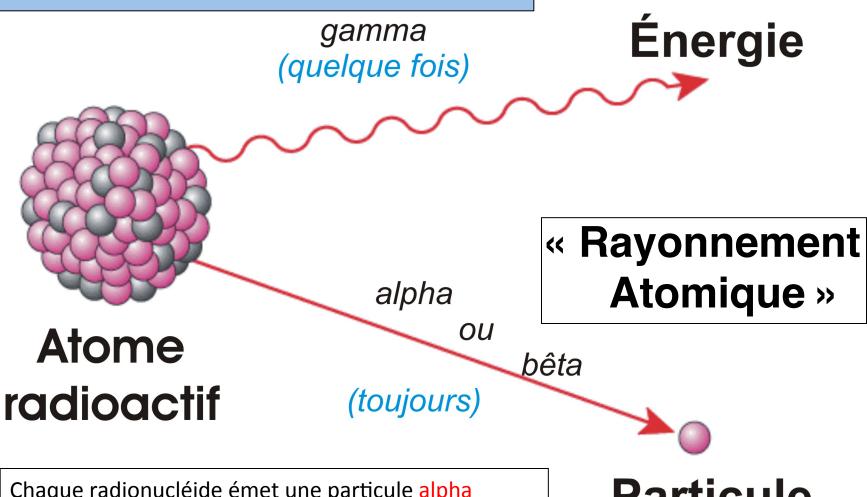
il désintègre de façon soudaine et violente

émettant du « rayonnement atomique »

Emissions radioactives

Énergie

Le noyau disintègre et emet 1 or 2 projectiles énergétiques


« Rayonnement Atomique »

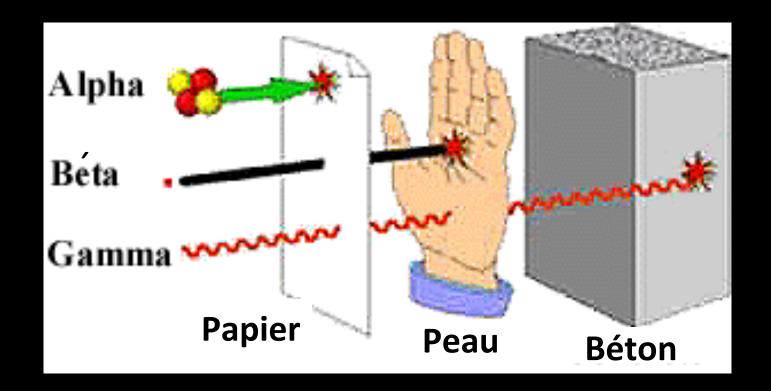
Atome radioactif

(ou « radionucléide »)

Alpha, Béta et Gamma

Chaque radionucléide émet une particule alpha ou une particule béta, l'une ou l'autre.

Dans certains cas un rayon gamma est émis aussi.


Tous les trois vont endommager des cellules vivantes.

Particule

Dans une « chambre nuage » on peut voir les émissions radioactives du minerai d'uranium.

Une particule alpha est arretée par une feuille de papier. Les émetteurs alpha sont inoffensifs à l'extérieur, mais extrêmement dangereux si ingerés ou inhalés.

Une particule béta penètre partiellement. Elle peut endommager les yeux ou la peau, mais le grand risque est l'exposition interne. Les rayons gamma sont très pénétrants. Ils entrainent une exposition du corps entier. Le blindage est souvent nécessaire. Un rayon gamma est comme un rayon x, mais plus puissant.

très pénétrant – facile à détecter

Une particule bêta est comme un balle sous-atomique.

modérément pénétrant – plus difficile à détecter

Une particule alpha est comme un boulet de canon sous-atomique.

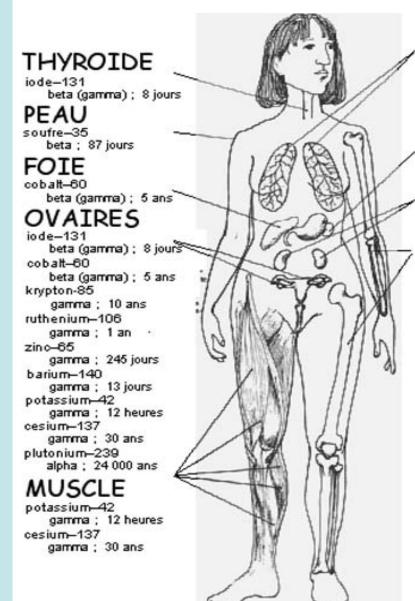
pas très pénétrant ~ mais extrêmement dommageable!

souvent manque de détection

Les particules alpha et bêta constituent une menace interne pour les organismes vivants

Deuxième leçon

Les éléments radioactifs ont différentes trajectoires dans le corps humain


Leurs émissions brisent les liens moléculaires, créant des fragments moléculaires chargés (des ions)

Les molecules d'ADN sont endommagées et ces cellules peut se développer anormalement

Les matières radioactives

sont des substances chimiques qui sont également radioactives.

CONTAMINATION RADIOACTIVE

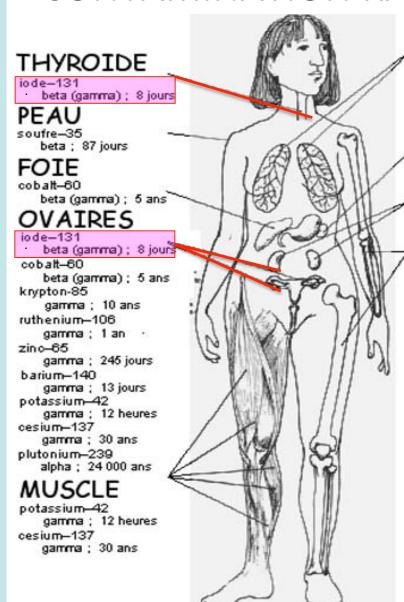
POUMONS

radon-222 (et corps entier) alpha: 3,8 jours uranium-233 (et os) alpha: 162 000 ans plutonium-239 (et os) alpha: 24 000 ans

polonium-210 (et corps entier) alpha; 138 jours

REIN

uranium-238 (et os) alpha; 4 500 000 ans ruthenium-106 (et os) gamma (beta); 1 an


os

radium-226 alpha: 1 620 ans gamma; 245 jours strontium-90 beta: 28 ans vttrium-90 beta; 64 heures promethiium-147 beta; 2 ans barium-140

beta (gamma); 13 jours thorium-234 beta: 24,1 jours phosphore-32 beta: 14 jours carbon-14 (et graisse) beta ; 5 600 ans

L'iode 131 se rend dans la glande thyroïde (dans la gorge) et puis l'endommage (aussi dans les ovaries des femmes)

CONTAMINATION RADIOACTIVE

POUMONS

radon-222 (et corps entier) alpha: 3,8 jours uranium-233 (et os) alpha; 162 000 ans plutonium-239 (et os) alpha: 24 000 ans

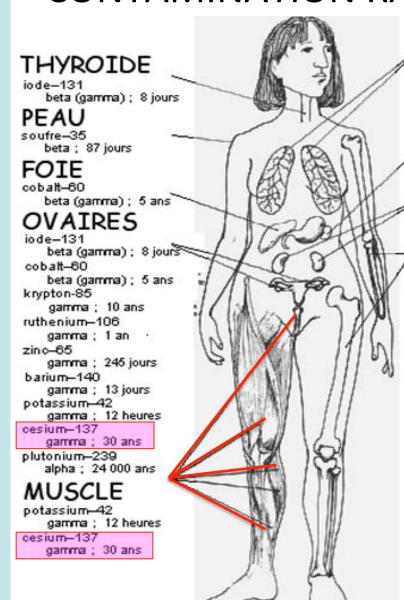
polonium-210 (et corps entier) alpha; 138 jours

REIN

uranium-238 (et os) alpha; 4 500 000 ans ruthenium-106 (et os) gamma (beta); 1 an

os

radium-226 alpha: 1 620 ans gamma; 245 jours strontium-90 beta: 28 ans vttrium-90 beta; 64 heures promethiium-147 beta; 2 ans barium-140


beta (gamma); 13 jours thorium-234 beta: 24,1 jours phosphore-32 beta: 14 jours carbon-14 (et graisse) beta ; 5 600 ans

CONTAMINATION RADIOACTIVE

Le césium 137

se comporte comme le potassium; il se rend dans le sang et les tissus mous

(Il rend la viande impropre à la consommation)

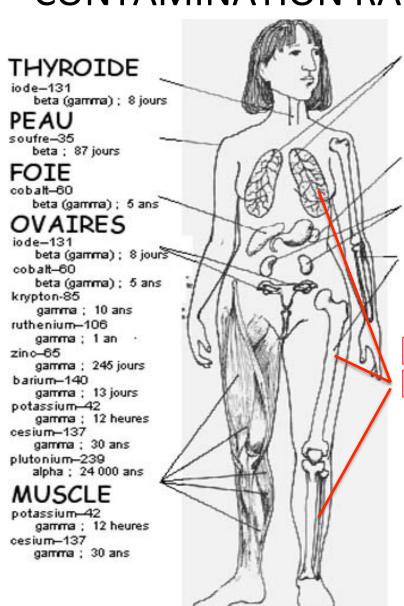
POUMONS

radon-222 (et corps entier) alpha: 3,8 jours uranium-233 (et os) alpha: 162 000 ans plutonium-239 (et os) alpha: 24 000 ans

polonium-210 (et corps entier) alpha; 138 jours

REIN

uranium-238 (et os) alpha; 4 500 000 ans ruthenium-106 (et os) gamma (beta); 1 an


os

radium-226 alpha: 1 620 ans gamma; 245 jours strontium-90 beta: 28 ans vttrium-90 beta; 64 heures promethiium-147 beta; 2 ans barium-140 beta (gamma); 13 jours

thorium-234 beta: 24,1 jours phosphore-32 beta: 14 jours carbon-14 (et graisse) beta: 5 600 ans

CONTAMINATION RADIOACTIVE

Le strontium 90
se comporte
comme le
calcium; il se
rend dans les os,
les dents et le lait
maternel.

POUMONS

radon-222 (et corps entier)
· alpha ; 3,8 jours
uranium-233 (et os)
alpha ; 162 000 ans
plutonium-239 (et os)
alpha ; 24 000 ans

RATE

polonium-210 (et corps entier) alpha; 138 jours

REIN

uranium-238 (et os) alpha; 4500 000 ans ruthenium-106 (et os) gamma (beta); 1 an

os

radium-226 alpha; 1 620 ans

gamma ; 245 jours strontium-90 beta : 28 ans

yttrium-90

beta; 64 heures

promethiium–147 beta; 2 ans barium–140

beta (gamma); 13 jours thorium–234

beta ; 24,1 jours phosphore–32 beta ; 14 jours

beta ; 14 jours carbon-14 (et graisse) beta ; 5 600 ans

Troisième leçon

L'exposition chronique augmente l'incidence du cancer, de la leucémie, des dommages génétiques, des paralysies cérébrales, des crises cardiaques, d'autres maladies du sang, et des déficiences de l'intelligence dans les embryons exposés

> mais il y a une « période de latence » ; ces maladies ne se manifestent qu'àpres des années ou des décennies suivant l'exposition

elle a découvert le radium et le polonium, deux « produits de désintégration » de l'uranium

Peinture de cadrans 1920

Radium 226

Polonium-210

. . . des milliards de fois plus toxique que le cyanure

. . . cause de 90% des décès chez les fumeurs

Alexandre Litvinenko 2006

assassiné avec du

Polonium-210

Los Alamos National Laboratory Division des produits chimiques

http://periodic.lanl.gov/elements/84.html

polonium 210

au même poids

il est 250 milliards de fois

plus toxique que le cyanure d'hydrogène.

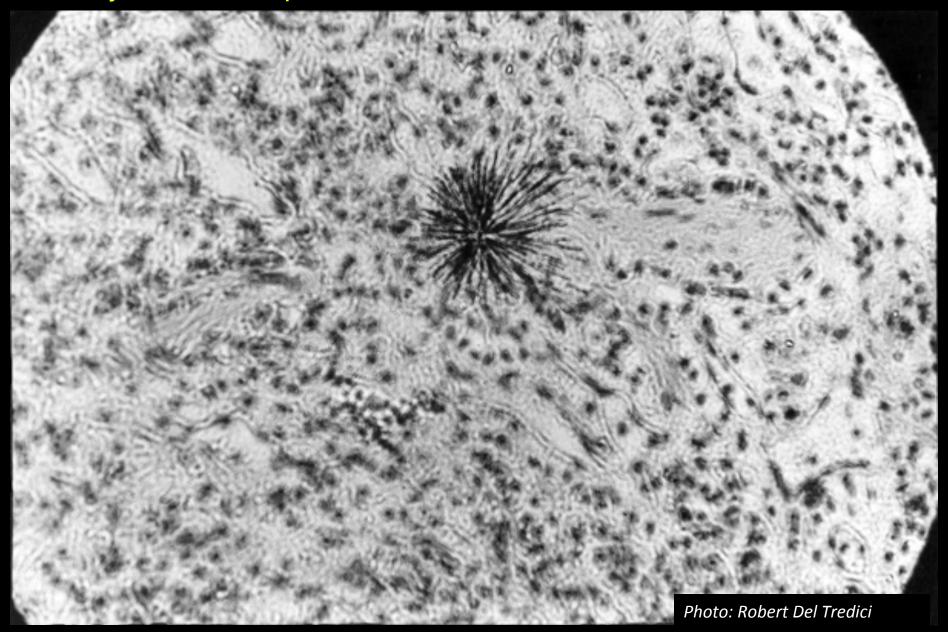
American Health Physics Society

polonium 210

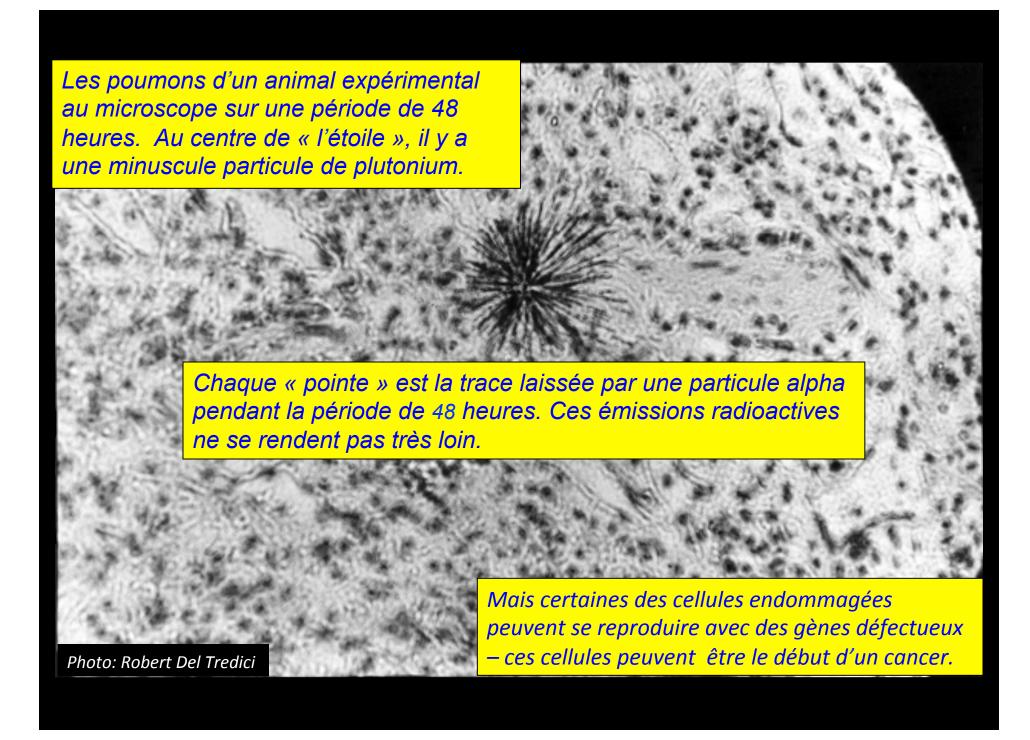
... est probablement la cause de 90% des

morts attribuables au tabac

(cancer du poumon, accident vasculaire cérébrale, attaque cardiaque)


Ce mineur d'uranium Navajo a le cancer du poumon

Le radon


. . . tue 20-30 mille Américains chaque année chez eux (EPA des É-U)

... est la principale cause de cancer du poumon chez les non-fumeurs

La rayonnement alpha ~ inoffensif à l'extérieur, mortel à l'intérieur.

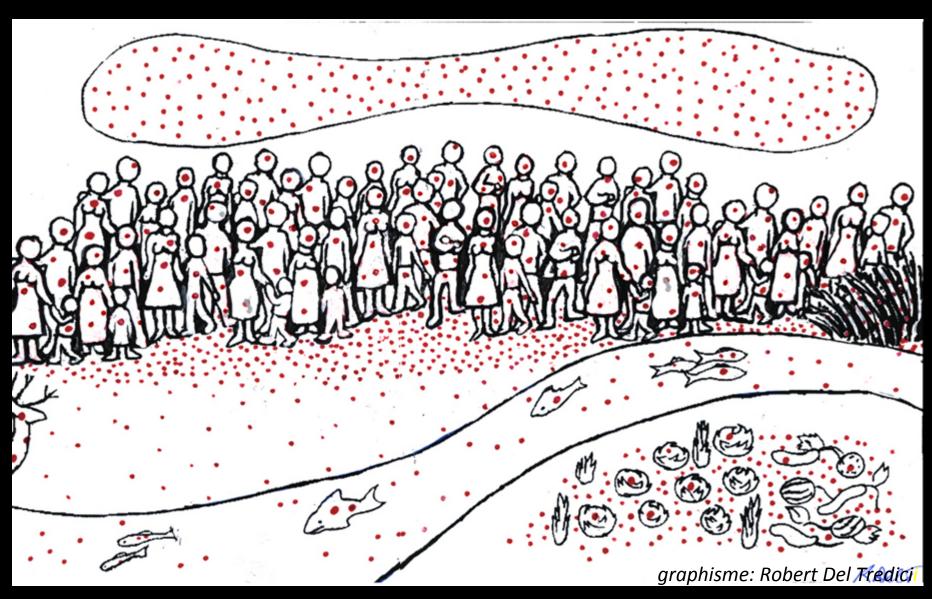
Le radium, le radon, le polonium, le thorium, l'uranium, le plutonium ~ tous sont des émetteurs alpha

Quatrième leçon

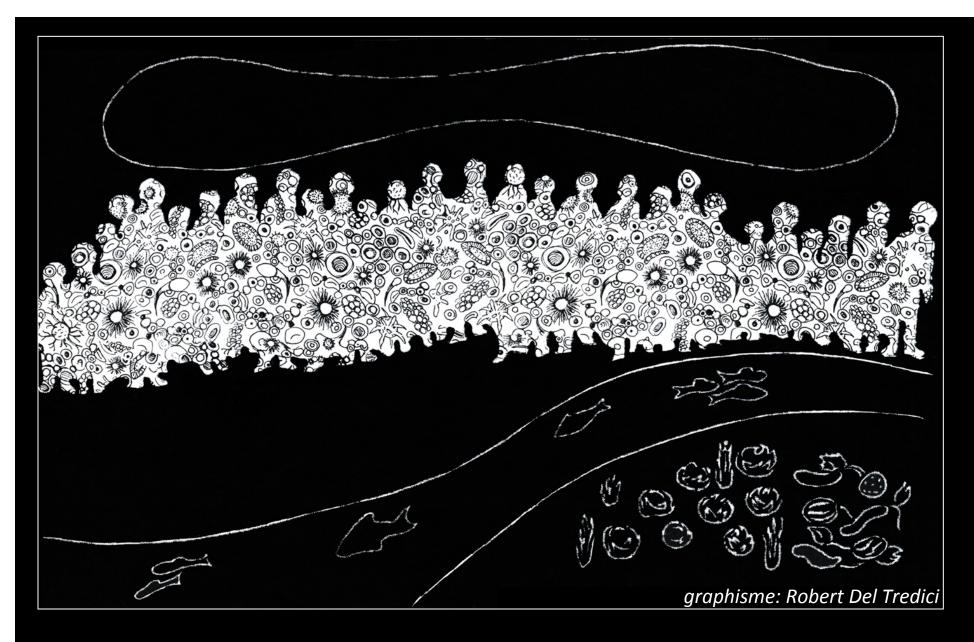
L'incidence de la maladie dépend de la « dose à la population ».

Plus la population est grande, plus grands sont les cas de maladies.

Le modèle « linéaire sans seuil » s'applique.


À de faibles niveaux d'exposition, des effets biologiques dommageables comme le cancer ne se manifestent que plusieurs années après l'exposition.

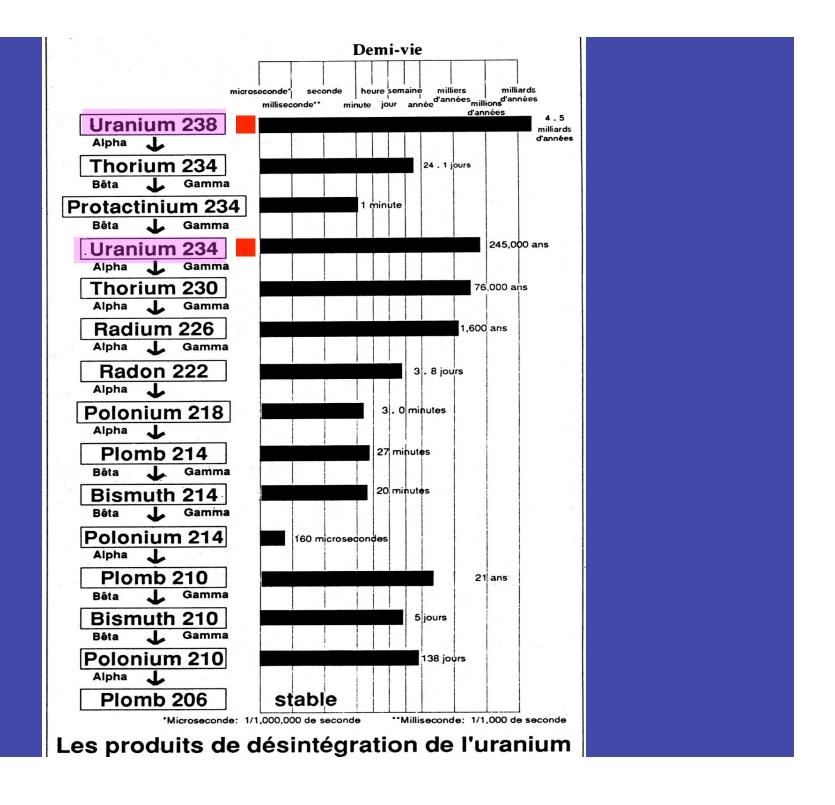
Les matières radioactives se retrouvent dans l'air, dans l'eau et dans le sol. Ils s'introduisent dans les poissons, les plantes, les animaux et les humains.


Une petite partie de la population va développer un cancer, des années plus tard. Les nouveaux-nés et les enfants sont particulièrement vulnérables

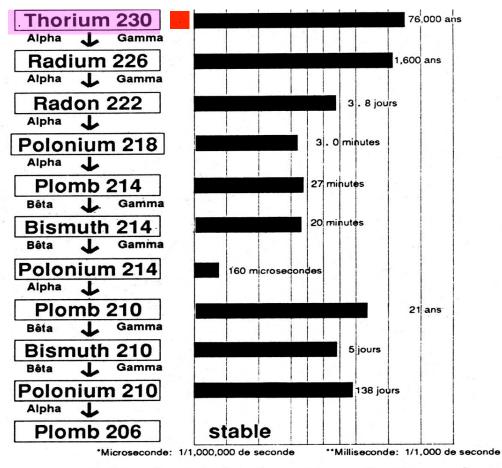
Si une plus grande population est exposée au *même* niveau de contamination, on dit que « la dose population » est plus importante.

Plus la dose population est importante, plus il y aura d'effets adverses pour la santé – comme le cancer.

À de faibles niveaux, la radioactivité n'attaque pas les humains directement – elle endommage les cellules. Une population est comme un océan de cellules.

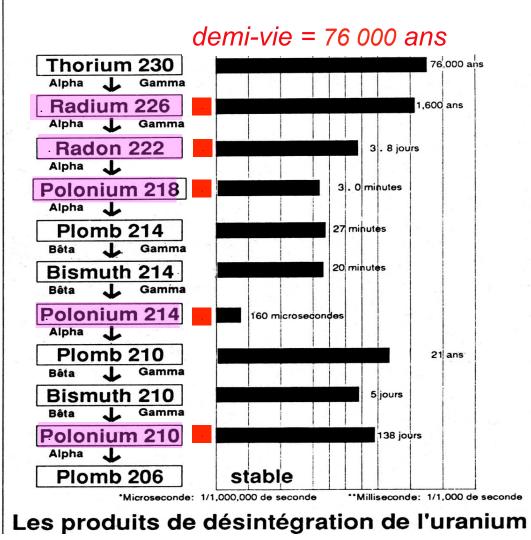

Une partie de ces cellules va se développer en cancers. C'est largement une question de hasard qui fera en sorte qu'un organisme aura un cancer.

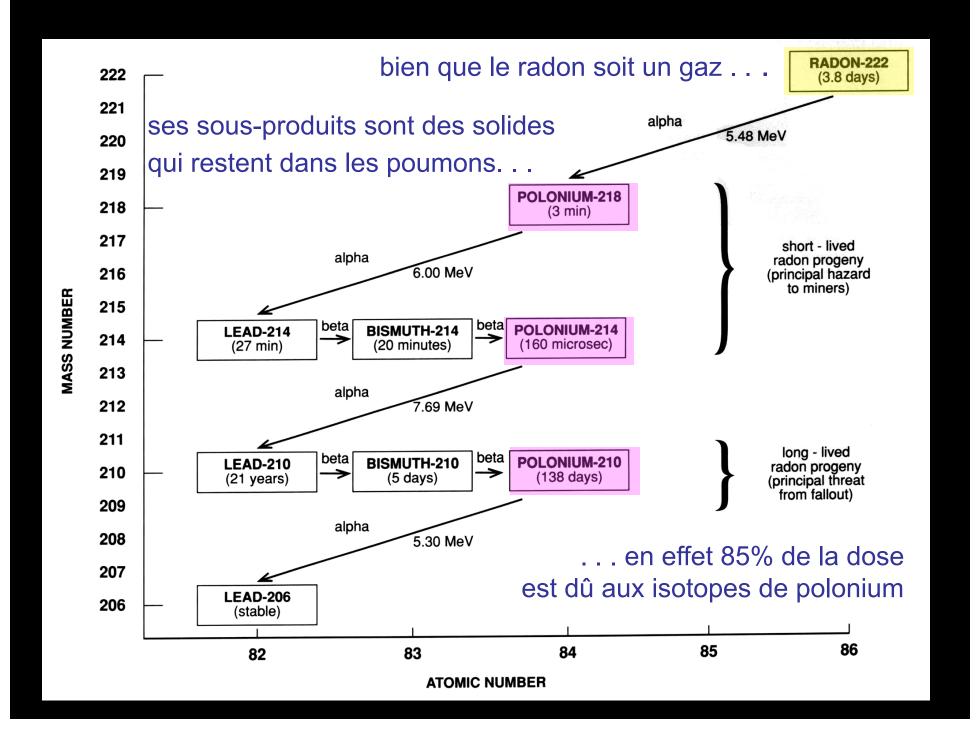
Cinquième leçon


Chaque désintégration produit un nouvel élément qu'on appelle «produit de désintégration»

L' uranium a une longue «chaîne de désintégration».

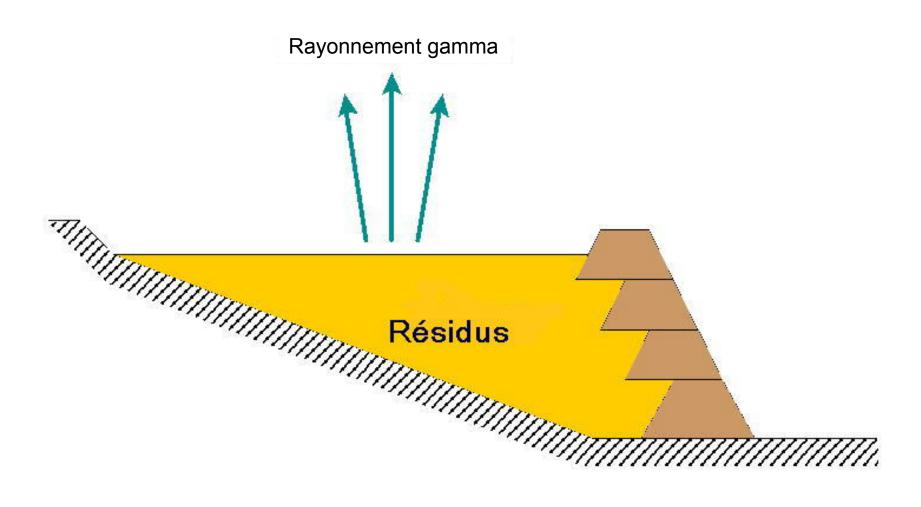
Ses produits de désintégration sont beaucoup plus radioactifs que l'uranium lui-même.



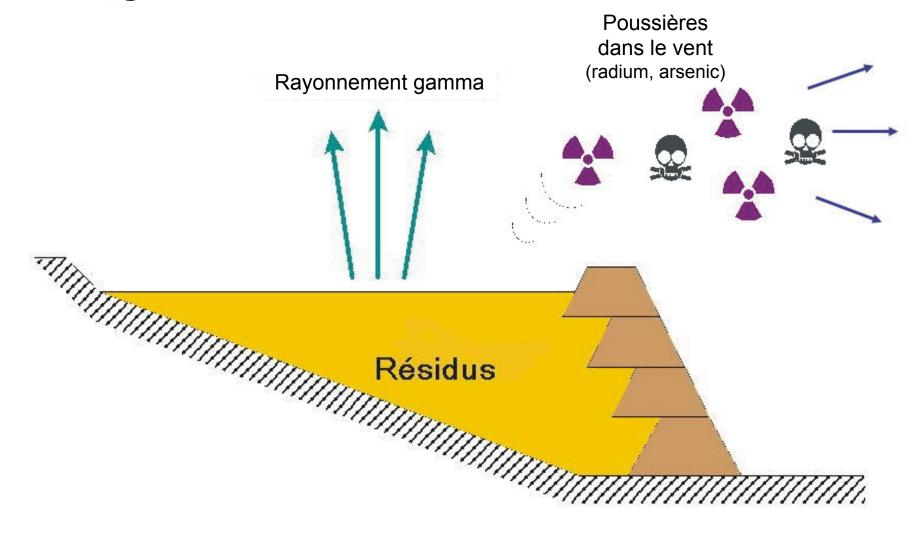

Après l'extraction de l'uranium du minerai 85 % du radioactivité contenu dans le minerai reste dans les résidus minières

Les produits de désintégration de l'uranium

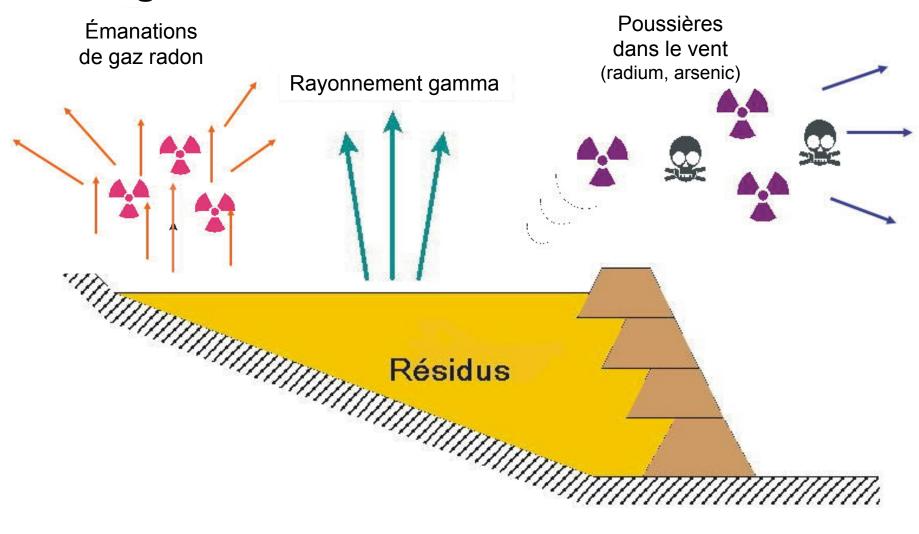
Dans les résidus miniers radioactifs le thorium 230 réapprovisionne l'inventaire du radium, du radon et du polonium pour des centaines de milliers d'années

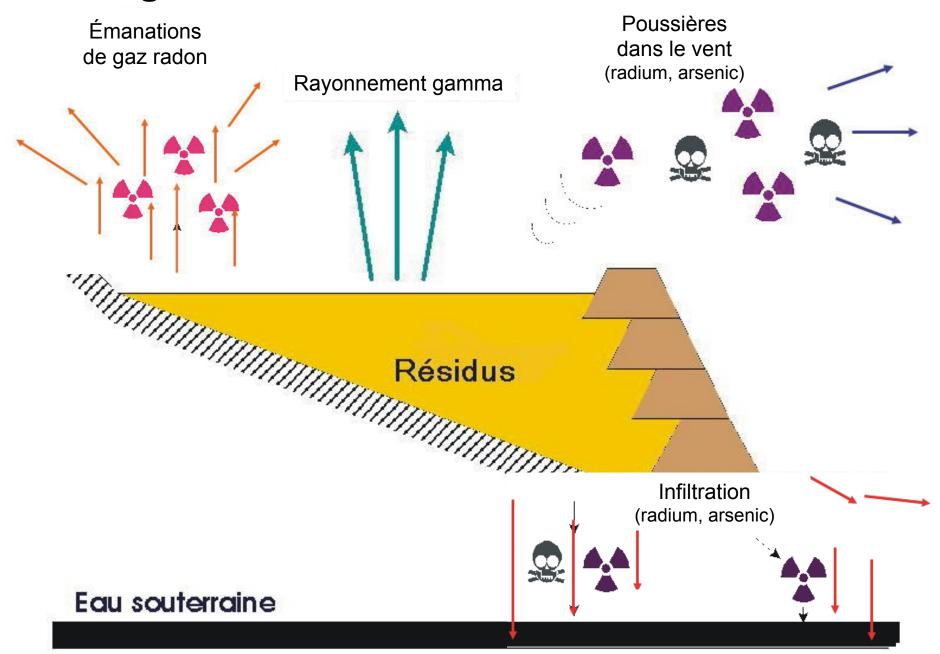


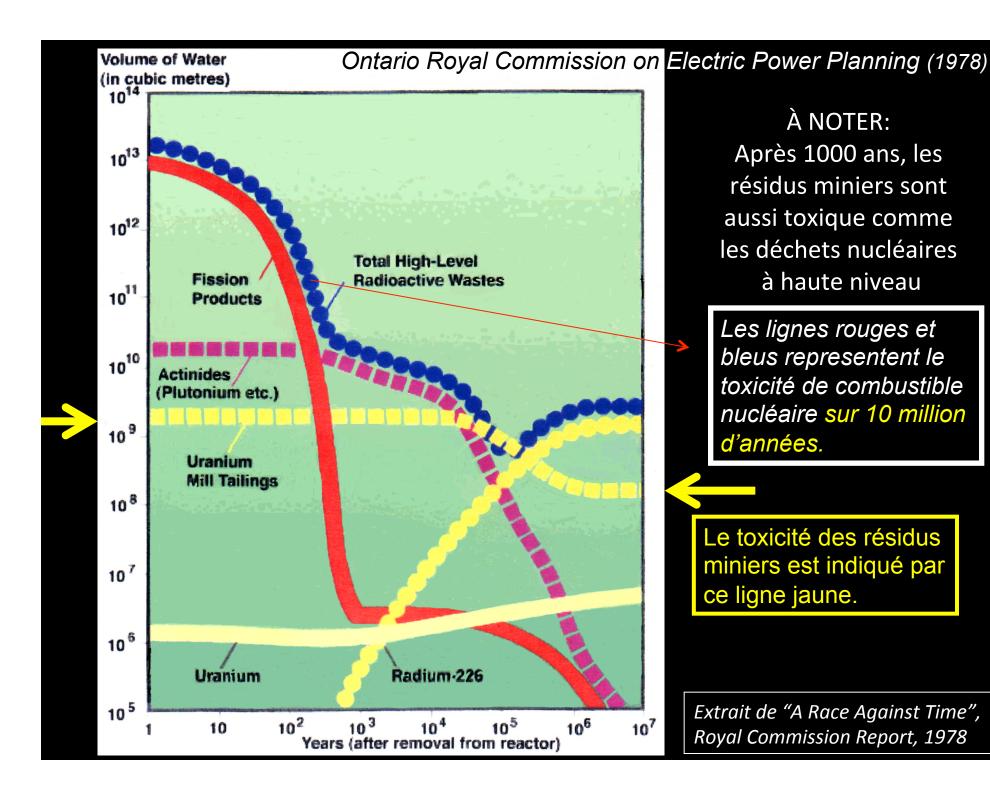
Sixième leçon


Les déchets d'uranium demeurent dangereux pendant 500,000 ans.

La contamination se répand par le vent, la pluie, l'érosion, les animaux, les travaux d'excavation...


Sans équipement spécialisé, c'est impossible de se rendre compte du danger.


Eau souterraine



Eau souterraine

Eau souterraine

Septième Leçon

Personne ne sait pas comment éteindre la radioactivité

c'est impossible de ralentir, d'accelerer ou d'arreter le taux des émissions radioactives

c'est pourquoi les déchets radioactives posent une problème irresolu

DEUX TYPES d'énergie nucléaire, très différent :

LA FISSION NUCLÉAIRE -

des noyaux sont « divisés » par les neutrons (penser aux Bombes & aux réacteurs nucléaires) Découverte : déc 1938 – jan 1939

LA RADIOACTIVITÉ -

des noyaux disintègrent spontanément

(penser aux "clics" d'un compteur Geiger) Découverte: 1896 par Henri Becquerel

La fission nucléaire : on peut la ralentir, accélerer ou éteindre, par l'exercice de *contrôler le nombre des neutrons*.

La radioactivité est imparable. Personne ne sait pas comment de l'éteindre, ou de la ralentir ou de l'accélerer.

La fission nucléaire crée des centaines des radionucléides nouveaux, très radioactives

C'est pourquoi on a une problème avec ces déchets . . .

Detecting radioactivity requires special equipment & protection

Radioactive contamination at West Valley NY from nuclear fuel waste

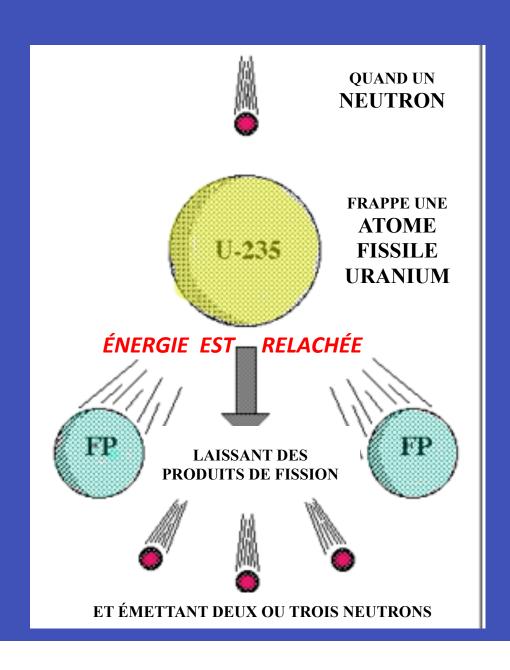
... Et personne ne sait pas comment d'éteindre la radioactivité

Autrefois il n'y aurait pas aucune problème

Fukushima Dai-Ichi centrale nucléaire, Units 1 – 4
Tous ces réacteurs étaient éteints après le tremblement de terre le 11 mars 11, 2011.

Les explosions étaient provoquées par la radioactivité des déchets nucléaires (chaleur + ionization → réactions chimiques → gaz hydrogène → explosions)

Le chaleur des déchets nucléaires ont causé 3 fontes de coeur et 4 édifices demolis. Sans refroidissement, le *chaleur de radioactivité accroit le température vers 2800 degrés*

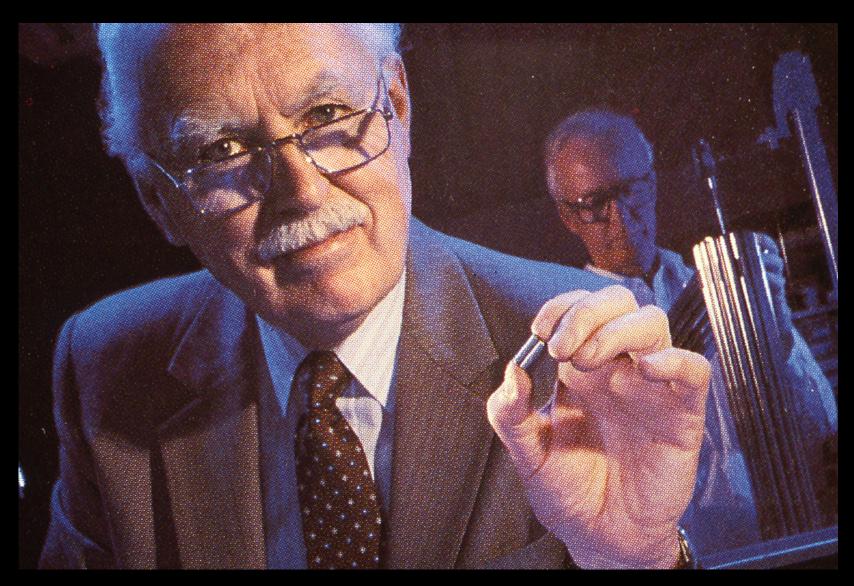

Huitième leçon


C'est irresponsable d'abandonner les déchets nucléaires.

L'intendance continue est obligatoire.

Les déchets nucléaires doivent en tout temps être contrôlés et récupérables.

La Fission Nucléaire



« Petit merveille » : Canadian Nuclear Association Ad

Une grappe de combustible peut être touchée sans danger avant l'usage, mais après ça il donnera une dose léthal de radiation dans quelques secondes. C'est causée par le rayonnement intense des produits de fission.

L'avantage principal de l'énergie nucléaire : ce petit grain de combustible nucléaire peut donner la même énergie comme une tonne de charbon.

Le désavantage principal : après qu'il est usé, on ne peut pas le jeter dans la poubelle – il faut le garder pour une période de dix million d'années.

Standard	Common Name of	Atomic Mass	F.P.	F.I.A.P.	Z.A.P.	Actinide
Chemical	element	Number	Fission	Activation	Activation	(includes
Symbol			Product	Product	Product	progeny)
Н	Hydrogen	3	¥¥¥	¥	¥	
(T)	(Tritium)					
Be	Beryllium	10		¥	¥	
C	Carbon	14		¥¥¥	¥¥¥	
Si	Silicon	32		¥	¥	
P	Phosphorus	32		¥	¥	
S	Sulphur	35		¥		
Cl	Chlorine	36		¥		
Ar	Argon	39		¥	¥	
Ar	Argon	42		¥	¥	
K	Potassium	40		¥		
K	Potassium	42			¥	
Ca	Calcium	41		¥		
Ca	Calcium	45			¥	
Sc	Scandium	46		¥		
Standard	Common Name of	Atomic Mass	F.P.	F.I.A.P.	Z.A.P.	Actinide
Chemical	element	Number	Fission	Activation	Activation	(includes
Symbol			Product	Product	Product	progeny)
V	Vanadium	50			¥	1 8 57
Mn	Manganese	54		¥	¥¥¥	
Fe	Iron	55		¥¥¥	¥¥¥	
Fe	Iron	59			¥	
Со	Cobalt	58		¥	¥	
Co	Cobalt	60		¥¥¥	¥¥¥	
Ni	Nickel	59		¥	¥¥¥	
Ni	Nickel	63		¥¥¥	¥¥¥	
Zn	Zinc	65		¥	¥	
Se	Selenium	79	¥¥¥			
Kr	Krypton	81	¥			
Kr	Krypton	85	¥¥¥			
Rb	Rubidium	87	¥			
Sr	Strontium	89	¥		¥	
Sr	Strontium	90	¥¥¥	¥	¥	
Y	Yttrium	90	¥¥¥	¥	¥	

Y	Yttrium	91	¥		¥	
Zr	Zirconium	93	¥¥¥	¥	¥¥¥	
Zr	Zirconium	95	¥	¥	¥	
Standard	Common Name of	Atomic Mass	F.P.	F.I.A.P.	Z.A.P.	Actinide
Chemical	element	Number	Fission	Activation	Activation	(includes
Symbol			Product	Product	Product	progeny)
Nb	Niobium	92	210000	7750000	¥	progenj)
Nb	Niobium	93m	¥¥¥	¥	¥¥¥	
Nb	Niobium	94	¥	¥	¥¥¥	
Nb	Niobium	95	¥	¥	¥	
Nb	Niobium	95m	¥		¥	
Mo	Molybdenum	93		¥	¥	
Tc	Technetium	99	¥¥¥	¥	¥	
Ru	Ruthenium	103	¥		_	
Ru	Ruthenium	106	¥¥¥			
Rh	Rhodium	103m	¥			
Rh	Rhodium	106	¥¥¥			
Pd	Palladium	107	¥¥¥			
Ag	Silver	108	¥	¥	¥	
Ag	Silver	108m	¥	¥¥¥	¥	
Ag	Silver	109m	¥	¥	¥	
Ag	Silver	110	¥	¥	¥	
Ag	Silver	110m	¥	¥	¥	
Cd	Cadmium	109	¥	¥	¥	
Cd	Cadmium	113	¥		¥	
Cd	Cadmium	113m	¥¥¥		¥	
Cd	Cadmium	115	¥			
Standard	Common Name of	Atomic Mass	F.P.	F.I.A.P.	Z.A.P.	Actinide
Chemical	element	Number	Fission	Activation	Activation	(includes
Symbol			Product	Product	Product	progeny)
In	Indium	113m			¥	1 0 1/
In	Indium	114	¥	¥	¥	
In	Indium	114m			¥	
In	Indium	115			¥	
Sn	Tin	113			¥	
Sn	Tin	117m	¥	¥	¥	
Sn	Tin	119m	¥¥¥		¥¥¥	
Sn	Tin	121m	¥		¥¥¥	
Sn	Tin	123	¥		¥	

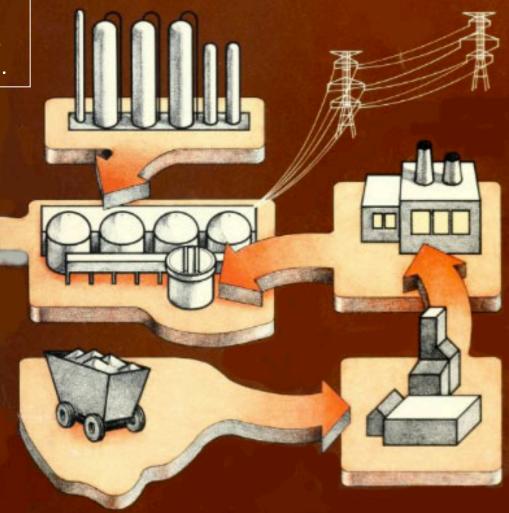
Sn	Tin	125	¥¥¥		¥	
Sn	Tin	126	111		•	
Sb	Antimony	124	¥		¥	
Sb	Antimony	125	¥¥¥		¥¥¥	
Sb	Antimony	126	¥		¥	
Sb	Antimony	126m	¥¥¥		•	
Te	Tellurium	123	¥		¥	
Te	Tellurium	123m	¥		¥	
Te	Tellurium	125m	¥¥¥		¥¥¥	
Te	Tellurium	127	¥		¥	
Te l	Tellurium	127m	¥		¥	
I	Iodine	129	¥		¥	
Standard	Common Name of	Atomic Mass	F.P.	F.I.A.P.	Z.A.P.	Actinide
Chemical	element	Number				
Symbol	element	Number	Fission	Activation	Activation	(includes
•			Product	Product	Product	progeny)
Cs	Cesium	134	¥			
Cs	Cesium	135	¥¥¥			
Cs	Cesium	137	¥¥¥			
Ba	Barium	137m	¥¥¥			
La	Lanthanum	138	¥			
Ce	Cerium	142	¥			
Ce	Cerium	144	¥¥¥			
Pr	Praseodymium	144	¥¥¥			
Pr	Praseodymium	144m	¥¥¥			
Nd	Neodymium	144	¥			
Pm	Promethium	147	¥¥¥			
Sm	Samarium	147	¥			
Sm	Samarium	148	¥	¥		
Sm	Samarium	149	¥			
Sm	Samarium	151	¥¥¥			
Eu	Europium	152	¥¥¥	¥		
Eu	Europium	154	¥¥¥	¥		
Eu	Europium	155	¥¥¥	¥		
Standard	Common Name of	Atomic Mass	F.P.	F.I.A.P.	Z.A.P.	Actinide
Chemical	element	Number	Fission	Activation	Activation	(includes
Symbol			Product	Product	Product	progeny)
Gd	Gadolinium	152	¥	¥	Troduct	progeny)
Gd Gd	Gadolinium	153	¥	¥		
Tb	Terbium	157	±	¥		
10	1 erbium	15/		¥		

Tb	Terbium	160		¥		
Dy	Dysprosium	159		¥		
Ho	Holmium	166m	¥	¥		
Tm	Thulium	170		¥		
Tm	Thulium	171		¥		
Lu	Lutetium	176		_	¥	
Lu	Lutetium	176			¥	
Lu	Lutetium	176			¥	
Hf	Hafnium	175			¥	
Hf	Hafnium	181			¥	
Hf	Hafnium	182			¥	
Ta	Tantalum	180			¥	
Ta	Tantalum	182			¥	
Standard	Common Name of	Atomic Mass	F.P.	F.I.A.P.	Z.A.P.	Actinide
Chemical	element	Number	Fission	Activation	Activation	(includes
Symbol			Product	Product	Product	\
•	TID. 4	101	Product	Product		progeny)
W W	Tungsten	181 185			¥ ¥	
W	Tungsten	188			¥ ¥	
	Tungsten					
Re	Rhenium	187			¥	
Re	Rhenium	188			¥	
Os	Osmium	194			¥	
Ir -	Iridium	192			¥	
Ir -	Iridium	192m			¥	
Ir -	Iridium	194			¥	
Ir	Iridium	194m			¥	
Pt	Platinum	193			¥	
Tl	Thallium	206			¥	
Tl	Thallium	207				¥
Tl	Thallium	208				¥
Tl	Thallium	209				¥
Pb	Lead	204			¥	
Pb	Lead	205			¥	
Pb	Lead	209				¥
Pb	Lead	210				¥
Pb	Lead	211				¥
Pb	Lead	212				¥
Pb	Lead	214				¥
Standard	Common Name of	Atomic Mass	F.P.	F.I.A.P.	Z.A.P.	Actinide

Chemical	element	Number	Fission	Activation	Activation	(includes
Symbol			Product	Product	Product	progeny)
Bi	Bismuth	208			¥	
Bi	Bismuth	210			¥	¥
Bi	Bismuth	210m				¥
Bi	Bismuth	211				¥
Bi	Bismuth	212				¥
Bi	Bismuth	213				¥
Bi	Bismuth	214				
Po	Polonium	210			¥	¥
Po	Polonium	211				¥
Po	Polonium	212				¥
Po	Polonium	213				¥
Po	Polonium	214				¥
Po	Polonium	215				¥
Po	Polonium	216				¥
Po	Polonium	218				¥
At	Astatine	217				¥
Standard	Common Name of	Atomic Mass	F.P.	F.I.A.P.	Z.A.P.	Actinide
Chemical	element	Number	Fission	Activation	Activation	(includes
Symbol			Product	Product	Product	`
· ·	D 1	210	Product	Product	Product	progeny)
Rn	Radon	219				¥
Rn	Radon	220				¥
Rn	Radon	222				¥
Fr	Francium	221				¥
Fr	Francium	221				¥
Ra	Radium	223				¥
Ra	Radium	224				¥
Ra	Radium	225				¥
Ra	Radium	226				¥
Ra	Radium	228				¥
Ac	Actinium	225				¥
Ac	Actinium	227				¥
Ac	Actinium	228				¥
Th	Thorium	227				¥
Th	Thorium	228				¥
Th	Thorium	229				¥
Th	Thorium	230				¥
Th	Thorium	231				¥
Th	Thorium	232				¥

Th	Thorium	234				¥¥¥
Standard	Common Name of	Atomic Mass	F.P.	F.I.A.P.	Z.A.P.	Actinide
Chemical	element	Number	Fission	Activation	Activation	(includes
Symbol			Product	Product	Product	progeny)
Pa	Protactinium	231				¥
Pa	Protactinium	233				¥¥¥
Pa	Protactinium	234				¥
Pa	Protactinium	234m				¥¥¥
U	Uranium	232				¥
U	Uranium	233				¥
U	Uranium	234				¥¥¥
U	Uranium	235				¥
U	Uranium	236				¥¥¥
U	Uranium	237				¥¥¥
U	Uranium	238				¥¥¥
U	Uranium	240				¥
Np	Neptunium	237				¥¥¥
Np	Neptunium	238				¥
Np	Neptunium	239				¥¥¥
Np	Neptunium	240				¥
Np	Neptunium	240m				¥
Pu	Plutonium	236				¥
Pu	Plutonium	238				¥¥¥
Pu	Plutonium	239				¥¥¥
Pu	Plutonium	240				¥¥¥
Pu	Plutonium	241				¥¥¥
Pu	Plutonium	242				¥¥¥
Pu	Plutonium	243				¥
Pu	Plutonium	244				¥
Standard	Common Name of	Atomic Mass	F.P.	F.I.A.P.	Z.A.P.	Actinide
Chemical	element	Number	Fission	Activation	Activation	(includes
Symbol			Product	Product	Product	progeny)
Am	Americium	241				¥¥¥
Am	Americium	242				¥¥¥
Am	Americium	242m				¥¥¥
Am	Americium	243				¥¥¥
Am	Americium	245				¥
Cm	Curium	242				¥¥¥
Cm	Curium	243				¥¥¥

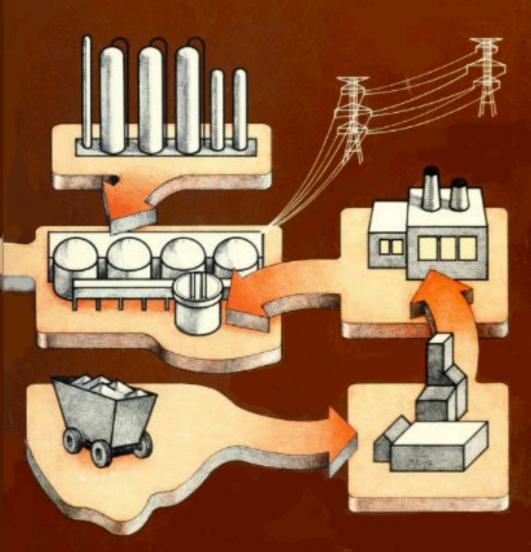
Cm	Curium	244				¥¥¥
Cm	Curium	245				¥
Cm	Curium	246				¥
Cm	Curium	247				¥
Cm	Curium	248				¥
Cm	Curium	250				¥
Bk	Berkelium	249				¥
Bk	Berkelium	250				¥
Cf	Californium	249				¥
Cf	Californium	250				¥
Cf	Californium	251				¥
Cf	Californium	252				¥
Standard	Common Name of	Atomic Mass	F.P.	F.I.A.P.	Z.A.P.	Actinide
Chemical	element	Number	Fission	Activation	Activation	(includes
Symbol			Product	Product	Product	progeny)


F.I.A.P. = fuel impurity activation product Z.A.P. = zirconium cladding activation product [source: AECL]

Cet inventaire de 211 radionucléides contenus dans le combustible nucléaire irradié n'est pas complet – pas de tout ! (ÉACL)

[ÉACL = Énergie Atomique du Canada Limitée]

La couverture du Rapport [1978]
De la Commission Royale illustre lea
« chaîne du combustible nucléaire » qui
inclut la mine, le concentration, le
raffinage, la fabrication du combustible,
et les réacteurs nucléaires, menant à . . .


A Race Against Time

Royal Commission on Electric Power Planning

... la quatrième de couverture, qui pose la question : « où iront ces déchets nucléaires finalement? »

A Race Against Time

Royal Commission on Electric Power Planning

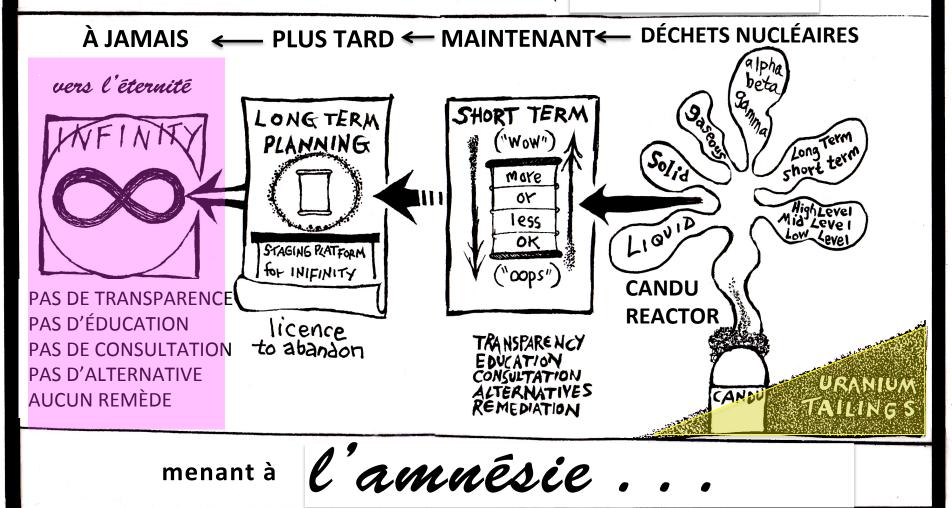
DES FAITS:

Il y a des centaines de poisons radioactifs avec des trajectoires biologiques distinctes.

On ignore comment détruire ou neutraliser ces déchets.

Les déchets nucléaires sont dangereux pour des milliers ou des millions d'années.

Se débarrasser = abandonner : cette approche est scientifiquement incertaine.


Aucun succès: on ne s'est jamais débarrassé définitivement de quoi que ce soit.

Les É.-U. ont essayé 8 fois de trouver un site d'enfouissement et ont échoué 8 fois.

L' Allemagne a deux sites d'enfouissement qui ont failli: Asse 2 et Morsleben.

WIPP, l'unique site d'enfouissement aux É.-U., a récemment failli à la tâche.

ABANDON

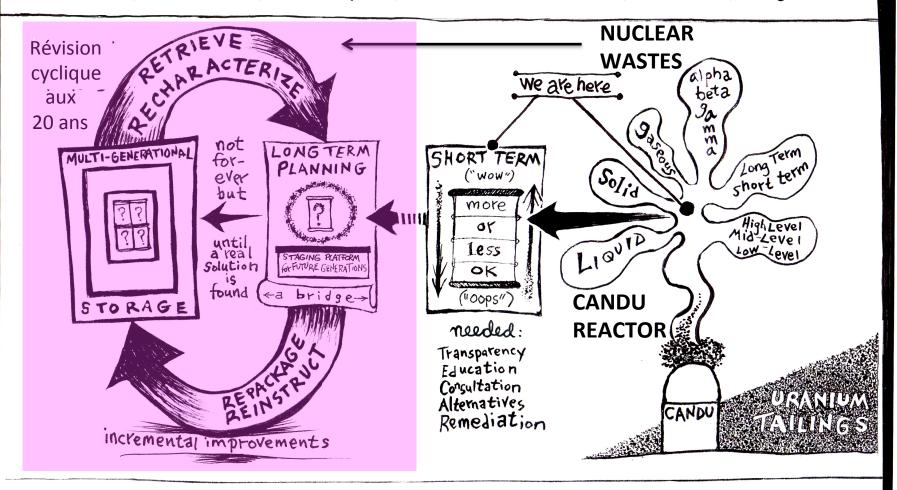
PROPOSITION:

Une politique de gestion des déchets nucléaires basée sur la franchise.

On commence en admettant que nous n'avons aucune solution acceptable.

Une alternative à l'abandon serait « l'intendance continue ».

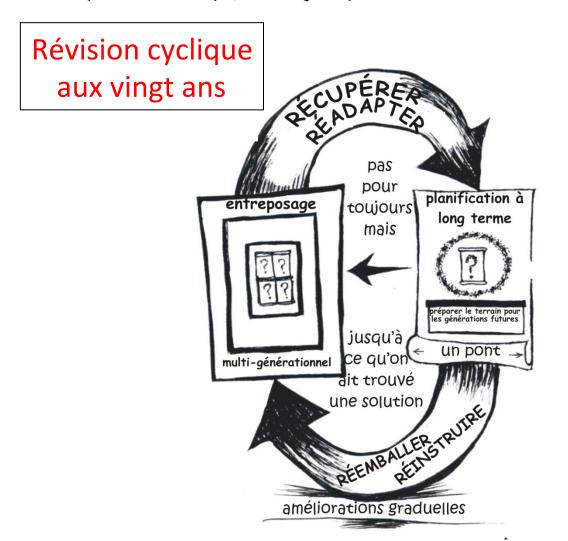
Les déchets sont contrôlés et récupérables dans l'avenir prévisible.


Les déchets sont empaquetés sécuritairement pour de longues périodes.

Ce n'est pas une solution – ce n'est qu'un plan éthique de gestion des déchets.

On a besoin de l'intendance continue jusqu' à ce qu' une «véritable solution» soit trouvée (si jamais!).

On devrait arrêter la production de déchets nucléaires supplémentaires.


INTENDANCE CONTINUE

MAINTIEN DE LA MEMOIRE

Les générations futures ont une bonne raison de chercher une véritable solution

INTENDANCE CONTINUE

MAINTIEN DE LA MEMOIRE

Les générations futures ont une bonne raison de chercher une véritable solution

U-BAN = Campagne internationale de bannir l'exploitation d'Uranium autour du monde

site: www.ccnr.org

courriel: ccnr@web.ca