Media Release The Refurbishment of Gentilly-2: A Bad Decision for Human Health

Thursday, August 21, 2008

For immediate release

Montreal, August 21, 2008. Three non-governmental organizations today deplored the decision of Hydro Quebec to spend two billion dollars to refurbish an aging nuclear reactor at Bécancour.

"This decision guarantees that the air and water will continue to be polluted with radioactive poisons for decades to come, and that the stockpile of long-lived radioactive wastes sitting by the banks of the St. Lawrence River will continue to accumulate, posing a threat to future generations of Quebeckers," said Gordon Edwards, president of the Canadian Coalition for Nuclear Responsibility. "It is a bad decision, and it should be reversed."

"According to Hydro-Quebec documents, the Gentilly-2 nuclear reactor releases radioactive poisons into the environment routinely: 49 different varieties go into the atmosphere, and 42 other varieties go into the water," said Marcel Jetté, president of the Regroupement des travailleurs victimes du nucléaire. "Even the storage area at Gentilly-2, where the radioactive wastes are kept, releases 8 different kinds of radioactive poisons into the environment all the time."

One of the radioactive materials released from the Gentilly-2 reactor is tritium, a radioactive form of hydrogen. It is released into the air in the form of radioactive water vapour, and into the river in the form of radioactive water. When breathed into the lungs, 100 percent of the tritium is absorbed into the body. About half as much again is absorbed directly through the skin. Once inside the body, tritium can cause cancer and genetic damage to DNA molecules; in pregnant women, the tritium is absorbed readily by the developing fetus.

Each year, the Gentilly-2 reactor emits more than 100 trillion becquerels of tritium into the atmosphere, and an even greater amount into the water. (A "becquerel" is a unit of radioactivity: one becquerel indicates that one radioactive disintegration is taking place every second.)

"These figures show that nuclear power is not a clean form of energy," said André Belisle, president of l'Association québécoise de lutte contre la pollution atmosphérique (AQLPA). "In its 2006 report, the BAPE reported that the routine releases of tritium are so great that the radioactivity in the drinking water in nearby communities would be illegal if California drinking water standards were used."

In Canada, drinking water is allowed to have up to 7,000 becquerels of tritium; in California, no more than 15 becquerels per litre is allowed. In 1993, an independent scientific advisory board asked that the permissible level of tritium in Ontario's drinking water be reduced to 20 becquerels per litre. Recently, Toronto City Council passed a resolution asking that the more stringent standard be adopted, but so far it hasn't happened.

What about the other 48 radioactive substances that are given off routinely by Gentilly-2? Only one of them is singled out for special attention: iodine-131. Radioactive iodine concentrates in milk and in the thyroid glands of adults and children. It can cause cancer and a host of other developmental problems in children, from stunted growth and mental retardation to other ailments.

Hydro-Quebec has issued a supply of "iodine tablets" to people living around the Gentilly-2 reactor, to be taken in case there is a sudden increase in the release of radioactive iodine. The non-radioactive iodine in the pills will go to the thyroid gland and prevent the uptake of very much radioactive iodine.

But there is no protection against the other 48 radioactive poisons that are released into the atmosphere, not for the other 42 radioactive materials that go into the drinking water.

"Quebeckers do not need nuclear power," said André Belisle. "Why should we be adding radioactive poisons to the air we breathe? Quebec has had a moratorium against any new reactors since 1978, but now Hydro-Quebec wants to cheat by building a new reactor inside the shell of the old reactor. This should not be allowed."

The three organizations are calling on Prime Minister Charest to enforce the existing moratorium and safeguard the environment of Quebec against further radioactive contamination by saying "no" to the proposed refurbishment. The two billion dollars would be much better spent on energy efficiency programs throughout the province, which will save far more energy than the Gentilly-2 reactor will ever be able to produce.

- 30 -

For more information, please contact :

Gordon Edwards, Ph.D., president of CCNR, Canadian Coalition for Nuclear Responsibility bureau : (514) 489 5118 cellulaire : (514) 839 7214

André Belisle, president of l'AQLPA l'Association québécoise de lutte contre la pollution atmosphérique bureau : 418-642-1322 cellulaire : 418-386-6992

Marce Jetté, president of RTVN Le Regroupement des travailleurs victimes du nucléaire 819-376-8785

According to Hydro-Québec, here are some radioactive substances given off into the environment by Gentilly-2 on a regular basis:

Note: the "m" indicates a "metastable" isotope -- that's an isotope that disintegrates by giving off a gamma ray without any accompanying alpha ray or beta ray.

A "radionuclide" is a particular type of radioactive atom. An "isotope" is a different variety of the same chemical element; differentisotopes have the same chemical properties but different nuclear properties such as radioactive characteristics.

> Gordon Edwards, Ph.D., President, Canadian Coalition for Nuclear Responsibility

List of radionuclides by source of emission http://www.hydroquebec.com/gentilly-2/pdf/ev_risques/2b.pdf

Gentilly-2 Nuclear Generating Station -- emissions into the air

49 radionuclides :

 3 H (tritium = hydrogen-3 = radioactive hydrogen), ¹⁴C (carbon-14), ⁶⁰Co (cobalt-60), ⁸⁵Kr(m), ⁸⁵Kr, ⁸⁷Kr, ⁸⁸Kr (4 isotopes of krypton gas), ⁸⁸Rb, ⁸⁹Rb (2 isotopes of rubidium), 89Sr, 90Sr, 91Sr, 92Sr (4 isotopes of strontium), ⁹⁵Zr, ⁹⁷Zr (2 isotopes of zirconium), ⁹⁵Nb, ⁹⁷Nb (2 isotopes of niobium), ¹⁰³Ru, ¹⁰⁶Ru (2 isotopes of ruthenium), ¹¹⁰Ag, ¹¹¹Ag (2 isotopes of radioactive silver), 124Sb, 125Sb (2 isotopes of antimony), 130I, 131I, 132I, 133I, 134I, 135I (6 isotopes of iodine), 131Xe, 133Xe, 133Xe(m), 135Xe, 135Xe(m), 138Xe (6 isotopes of xenon gas), 134Cs, 136Cs, 138Cs (3 isotopes of cesium), ¹⁴⁰Ba (barium-140), ¹⁴⁰La, ¹⁴¹La, ¹⁴²La (3 isotopes of lanthanum), ¹⁴¹Ce, ¹⁴³Ce, ¹⁴⁴Ce (3 isotopes of cerium),

²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu (3 isotopes of plutonium),
²⁴¹Am (americium-241)

Gentilly-2 Nuclear Generating Station -- emissions into the water

42 radionuclides :

 3 H (tritium = hydrogen-3 = radioactive hydrogen), ¹⁴C (carbon-14), ⁵¹Cr (chromium-51), ⁵⁴Mn (managnese-54), ⁵⁹Fe (iron-59), ⁶⁰Co (cobalt-60), ⁶⁵Zn (zinc-65), ⁸⁶Rb (rubidium-86), ⁸⁹Sr, ⁹⁰Sr (2 isotopes of strontium), ⁹⁵Zr (zirconium-95), ⁹⁵Nb (niobium-95), ⁹⁹Mo (molybdenum-99), ¹⁰³Ru,¹⁰⁶Ru (2 isotopes of ruthenium), ¹¹⁰Ag, ¹¹¹Ag (2 isotopes of silver), ¹²⁴Sb, ¹²⁵Sb (2 isotopes of antimony), ¹³¹I (iodine-131), 134Cs, 136Cs, 137Cs (3 isotopes of cesium), ¹⁴⁰Ba (baryum-140), ¹⁴⁰La (lanthanum-140), 141Ce, 143Ce, 144Ce (3 isotopes of cerium), ¹⁵⁴Eu, ¹⁵⁵Eu, ¹⁵⁶Eu (3 isotopes of europium), 234U, 235U, 238U (3 isotopes of uranium), 238Pu, 239Pu, 240Pu, 241Pu (4 isotopes of plutonium), 241Am, 243Am (2 isotopes of americium), 242Cm, 244Cm (2 isotopes of curium)

G-2 external storage area for radioactive wastes -- emissions

8 radionuclides :

³H (tritium = hydrogen-3 = radioactive hydrogen), ¹⁴C (carbon-14), ⁵⁴Mn (manganese-54), ⁶⁰Co (cobalt-60), ⁹⁵Zr (zirconium-95), ⁹⁵Nb (niobium-95), ¹²⁴Sb (antimony-124), ¹⁸¹Hf (hafnium-181)

Gentilly-2 Nuclear Generating Station: data on some routine radioactive emissions as identified by H-Q.

[ext = external risk: int = internal risk]

SYMBOL	NAME	HALF-LIFE	RAYS	ORGANS	RISK
	tritium			whole body,	
³ H	(hydrogen-3)	13 years	beta	DNA, fetus	int
14C	carbon-14	5 750 years	beta	whole body	int
51Cr	chromium-51	28 days	beta, gamma, x	intestine, kidney	int
⁵⁴ Mn	manganese-54	10 months	beta, gamma, x	bone, whole body	int
⁵⁹ Fe	iron-59	45 days	beta & gamma	intestine, spleen	int
60Co	cobalt-60	5.4 years	beta & gamma	whole body	Int
⁶⁵ Zn	zinc-65	144 days	beta & gamma	whole body	int
⁸⁵ Kr(m)	krypton-85m	4.4 hours	beta & gamma	whole body	ext
⁸⁵ Kr	krypton-85	11 years	beta & gamma	whole body	ext
87Kr	krypton-87	76 minutes	beta & gamma	whole body	ext
⁸⁸ Kr	krypton-88	2.8 hours	beta & gamma	whole body	ext
⁸⁶ Rb	rubidium-86	19 days	beta & gamma	bone, lung, kidney	ext
⁸⁸ Rb	rubidium-88	18 minutes	beta & gamma	bone, lung, kidney	ext
⁸⁹ Rb	rubidium-89	15 minutes	beta & gamma	bone, lung, kidney	ext
⁸⁹ Sr	strontium-89	51 days	beta	bone, milk, teeth	int
⁹⁰ Sr	strontium-90	29 years	beta	bone, milk, teeth	int
⁹¹ Sr	strontium-91	9.6 hours	beta & gamma	bone, milk, teeth	ext
⁹² Sr	strontium-92	2.7 hours	beta & gamma	bone, milk, teeth	ext
95 <u>Z</u> r	zirconium-95	64 days	beta & gamma	liver	int
97Zr	zirconium-97	17 hours	beta & gamma	liver	ext
⁹⁵ Nb	niobium-95	35 jours	beta & gamma	bone, lung	int
⁹⁷ Nb	niobium-97	1.2 hours	beta & gamma	bone, lung	ext
⁹⁹ Mo	molybdenum-99	2.8 days	beta & gamma	all organs	ext
¹⁰³ Ru	ruthenium-103	39 days	beta & gamma	blood, liver, musc.	int
106Ru	ruthenium-106	1 year	beta & gamma	blood, liver, musc.	int
¹¹⁰ Ag	silver-110	25 seconds	beta & gamma	pancreas, heart	ext
¹¹¹ Ag	silver-111	7.5 days	beta & gamma	pancreas, heart	ext
124Sb	antimony-124	50 days	beta & gamma	gastrointestinal	ext
125Sb	antimony-125	2.8 years	beta & gamma	gastrointestinal	ext
130I	iodine-130	12 hours	beta & gamma	thyroid	ext
131 _I	iodine-131	8 days	beta & gamma	thyroid, body	ext
132 _I	iodine-132	2.3 hours	beta & gamma	thyroid	ext

133 _I	iodine-133	21 hours	beta & gamma	thyroid	ext
134 _I	iodine-134				
		53 minutes	beta & gamma	thyroid	ext
135 <u>I</u>	iodine-135	6.6 hours	beta & gamma	thyroid	ext
131Xe	xenon-131	stable	none	none	
¹³³ Xe(m)	xenon-133m	2 days	gamma	whole body	ext
133Xe	xenon-133	5 days	beta & gamma	whole body	ext
¹³⁵ Xe(m)	xenon-135m	15 minutes	gamma	whole body	ext
¹³⁵ Xe	xenon-135	9 hours	beta & gamma	whole body	ext
¹³⁸ Xe	xenon-138	14 minutes	beta & gamma	whole body	ext
134Cs	cesium-134	2 years	beta & gamma	muscle	int
136 Cs	cesium-136	13 days	beta & gamma	muscle	ext
137Cs	cesium-137	30 years	beta & gamma	muscle	int
138Cs	cesium-138	33 minutes	beta & gamma	muscle	ext
¹⁴⁰ Ba	barium-140	13 days	beta & gamma	bone	int
¹⁴⁰ La	lanthanum-140	1.7 days	beta & gamma	liver, spleen, fetus	int
¹⁴¹ La	lanthanum-141	3.9 hours	beta & gamma	liver, spleen, fetus	ext
¹⁴² La	lanthanum-142	1.5 hours	beta & gamma	liver, spleen, fetus	ext
¹⁴¹ Ce	cerium-141	31.5 days	beta & gamma	liver, spleen, fetus	int
¹⁴³ Ce	cerium-143	1.4 days	beta & gamma	liver, spleen, fetus	ext
¹⁴⁴ Ce	cerium-144	285 days	beta & gamma	liver, spleen, fetus	int
¹⁵⁴ Eu	europium-154	8.6 years	beta & gamma	bone	ext
155Eu	europium-155	4.8 years	beta & gamma	bone	ext
156Eu	europium-156	15 days	beta & gamma	bone	ext
¹⁸¹ Hf	hafnium-181	42 days	beta & gamma	bone	ext
234U	uranium-234	250 000 yrs	alpha	lung, kidney	int
235U	uranium-235	700 million yr	alpha	lung, kidney	int
238U	uranium-238	4.5 billion yrs	alpha	lung, kidney	int
²³⁸ Pu	plutonium-238	88 years	alpha	bone, lung	int
²³⁹ Pu	plutonium-239	24 400 yrs	alpha	bone, lung	int
²⁴⁰ Pu	plutonium-240	6 567 years	alpha	bone, lung	int
²⁴¹ Pu	plutonium-241	14 years	beta	bone, lung	int
²⁴¹ Am	americium-241	433 years	alpha	bone, lung, kidney	int
²⁴² Am	americium-242	16 hours	beta	bone, lung, kidney	int
²⁴² Cm	curium-242	163 days	alpha	bone, lung, kidney	int
²⁴⁴ Cm	curium-244	18 years	alpha	bone, lung, kidney	int

Predominant contributors to radiation dose through ingestion: Sr-90, I-131, Cs-134, Cs-137, Ru-103, Ru-106, Pu-238, Pu-239, and Am-241