Communiqué de presse

La réfection du réacteur Gentilly-2 : une mauvaise décision pour la santé

jeudi, 21 août 2008

pour diffusion immédiate

Montréal, le 21 août 2008. Trois organisations non-gouvernementales ont déploré aujourd'hui la décision d'Hydro-Québec de dépenser deux milliards de dollars pour reconstruire le vieux réacteur nucléaire de Bécancour.

- « Cette décision garantit que l'air et l'eau vont continuer à être pollués par des poisons radioactifs pendant encore des décennies et que les dépôts de déchets radioactifs vont continuer à s'accumuler sur le bord du fleuve St-Laurent. C'est une menace pour les générations futures québécoises », a déclaré Gordon Edwards, président du Regroupement pour la surveillance du nucléaire. « C'est une mauvaise décision, et elle doit être renversée. »
- « Selon les documents d'Hydro-Québec, le réacteur nucléaire relâche de manière routinière des isotopes radioactifs dans l'environnement. Il y en a 49 qui vont dans l'air et 42 qui vont dans l'eau », déclare Marcel Jetté, président du Regroupement des travailleurs victimes du nucléaire. « Même l'entrepôt de Gentilly-2, où des déchets radioactifs sont gardés, relâche 8 isotopes radioactifs dans l'environnement tous les jours ».

Un de ces produits relâchés par Gentilly-2 est le tritium, un isotope radioactif de l'hydrogène. Il est émis dans l'air sous la forme de vapeur d'eau, et dans le fleuve sous la forme d'eau tritiée radioactive. Quand on respire cette vapeur, un fort pourcentage de ce tritium est absorbé par le corps humain. Une fois à l'intérieur du corps, le tritium peut causer un cancer et des mutations génétiques. Chez les femmes enceintes le tritium est absorbé par le fœtus.

Chaque année, le réacteur Gentilly-2 relâche plus de 100 trillions de becquerels de tritium dans l'atmosphère, et beaucoup plus dans l'eau. (Un becquerel, unité de radioactivité, correspond à une désintégration par seconde.)

« Ces chiffres montrent que l'énergie nucléaire n'est pas une forme d'énergie propre », affirme André Belisle, président de l'Association québécoise de lutte contre la pollution atmosphérique (AQLPA). « Dans son rapport de 2006, le Bureau d'audiences publiques en environnement (BAPE) révélait que les émissions routinières de tritium sont si élevées que la radioactivité dans l'eau potable des communautés avoisinantes serait illégale en Californie, État où les normes sont plus strictes. »

Au Canada, on permet un niveau de radioactivité pour le tritium dans l'eau de 7 000 becquerels par litre (Bq/L). En Californie un niveau de seulement 15 Bq/L est permis. En 1993, un comité scientifique aviseur a demandé que le niveau permissible en Ontario soit réduit à $20 \, \text{Bq/L}$ pour l'eau potable. Récemment le

Conseil de ville de Toronto demandait que ce niveau soit imposé, mais la mesure n'a pas encore été adoptée.

Qu'en est-il des 48 isotopes radioactifs relâchés quotidiennement par Gentilly-2? Seul l'iode 131 est l'objet d'une attention particulière. Cette substance radioactive se concentre dans le lait et se loge dans la glande thyroïde des enfants et des adultes. Il peut causer le cancer et toute une panoplie de problèmes de développement chez les enfants, allant des problèmes de croissance à l'attardation mentale.

Hydro-Québec a distribué des comprimés d'iode non-radioactif à la population vivant dans le voisinage du réacteur. Advenant un accident avec émission d'iode 131, l'iode des comprimés ira saturer la glande thyroïde et pour réduire la quantité d'iode 131 qui serait absorbée autrement.

Mais il n'y a pas ce genre de protection contre les 48 autres isotopes radioactifs qui sont relâchés dans l'air et les autres 41 relâchés dans l'eau.

- « Les Québécois n'ont pas besoin de l'énergie nucléaire », affirme André Belisle. « Pourquoi ajouter des poisons radioactifs à l'air que nous respirons? » demandet-il.
- « Il y a un moratoire sur la construction de nouveaux réacteurs nucléaires au Québec depuis 1978, mais maintenant Hydro-Québec veut contourner ce moratoire en construisant un nouveau réacteur à l'intérieur de la coquille du vieux réacteur. Cela ne devrait pas être permis. »

Les trois organisations en appellent au premier ministre Jean Charest de mettre en vigueur le moratoire et de protéger l'environnement en refusant la demande de reconstruction de Gentilly-2. Il serait beaucoup mieux d'investir les deux milliards de dollars dans l'efficacité énergétique partout dans la province, ce qui sauverait beaucoup plus d'énergie que Gentilly-2 ne pourra jamais produire.

- 30 -

Pour plus de renseignements, veuillez prendre contact avec :

Gordon Edwards, Ph.D., président du RSN, Le Regroupement pour la surveillance du nucléaire bureau (514) 489 5118 cellulaire (514) 839 7214

André Belisle, président de l'AQLPA l'Association québécoise de lutte contre la pollution atmosphérique bureau 418-642-1322 cellulaire : 418-386-6992

Marce Jetté, président du RTVN Le Regroupement des travailleurs victimes du nucléaire 819-376-8785

Selon Hydro-Québec, voici les substances radioactives rejetées dans l'environnement par le réacteur Gentilly-2 de manière routinière.

Notez : le "m" indique un isotope "métastable" -- c'est un isotope qui se disintègre en emettant un rayon gamma sans aucun rayon bêta ou alpha.

Gordon Edwards, Ph.D., president du Regroupement pour la surveillance du nucléaire

Répartition des radionucléides en fonction des sources d'émissions et de rejets

http://www.hydroguebec.com/gentilly-2/pdf/ev_risques/2b.pdf

Centrale nucléaire de Gentilly-2 -- émissions dans l'air

49 radionucléides :

```
<sup>3</sup>H (tritium = hydrogène-3 = hydrogène radioactif),
<sup>14</sup>C (carbone-14), <sup>60</sup>Co (cobalt-60),
85Kr(m), 85Kr, 87Kr, 88Kr (4 isotopes du gaz krypton),
<sup>88</sup>Rb, <sup>89</sup>Rb (2 isotopes de rubidium),
89Sr, 90Sr, 91Sr, 92Sr (4 isotopes de strontium),
95Zr, 97Zr (2 isotopes de zirconium),
95Nb, 97Nb (2 isotopes de niobium),
103Ru, 106Ru (2 isotopes de ruthénium),
<sup>110</sup>Ag, <sup>111</sup>Ag (2 isotopes d'argent),
124Sb, 125Sb (2 isotopes d'antimoine),
130I, 131I, 132I, 133I, 134I, 135I (6 isotopes d'iode),
131Xe, 133Xe, 133Xe(m), 135Xe, 135Xe(m), 138Xe
(6 isotopes du gaz xénon),
134Cs, 136Cs, 138Cs (3 isotopes de césium),
<sup>140</sup>Ba (baryum-140),
140La, 141La, 142La (3 isotopes de lanthane),
141Ce, 143Ce, 144Ce (3 isotopes de cérium),
239Pu, 240Pu, 241Pu (3 isotopes de plutonium),
<sup>241</sup>Am (americium-241)
```

Centrale nucléaire de Gentilly-2 -- rejets dans l'eau

42 radionucléides :

³H (tritium = hydrogène-3 = hydrogène radioactif). ¹⁴C (carbone-14), ⁵¹Cr (chrome-51), ⁵⁴Mn (manganèse-54), ⁵⁹Fe (fer-59), 60Co (cobalt-60), 65Zn (zinc-65), 86Rb (rubidium-86), 89Sr, 90Sr (2 isotopes de strontium), 95Zr (zirconium-95), 95Nb (niobium-95), 99Mo (molybdène-99), 103Ru, 106Ru (2 isotopes de ruthénium), ¹¹⁰Ag, ¹¹¹Ag (2 isotopes d'argent), 124Sb, 125Sb (2 isotopes d'antimoine), 131I (iode-131), 134Cs. 136Cs. 137Cs (3 isotopes de césium), ¹⁴⁰Ba (baryum-140), ¹⁴⁰La (lanthane-140), 141Ce, 143Ce, 144Ce (3 isotopes de cérium), 154Eu, 155Eu, 156Eu (3 isotopes d'europium), 234U, 235U, 238U (3 isotopes d'uranium), ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu (4 isotopes de plutonium), 241Am, 243Am (2 isotopes d'americium), 242Cm, 244Cm (2 isotopes de curium)

Gentilly-2 : aire de stockage de déchets radioactifs -- rejets

8 radionucléides :

```
<sup>3</sup>H (tritium = hydrogène-3 = hydrogène radioactif),

<sup>14</sup>C (carbone-14), <sup>54</sup>Mn (manganèse-54),

<sup>60</sup>Co (cobalt-60), <sup>95</sup>Zr (zirconium-95),

<sup>95</sup>Nb (niobium-95), <sup>124</sup>Sb (antimoine-124),

<sup>181</sup>Hf (hafnium-181)
```

Centrale nucléaire de Gentilly-2 : renseignements sur les émissions radioactives routinières identifiées par H-Q.

[ext = risque externe; int = risque interne]

	T		Text Hodge C	Title Tisque	
SYMBOLE	NOM	DEMI-VIE	RAYONS	ORGANES	ΟÛ
³ H	tritium (hydrogène-3)	13 ans	bêta	corps entier, ADN, foetus	int
14C	carbone-14	5 750 ans	bêta	corps entier	int
51Cr	chrome-51	28 jours	bêta, gamma, x	intestin, rein	int
⁵⁴ Mn	manganèse-54	10 mois	bêta, gamma, x	os, corps entier	int
⁵⁹ Fe	fer-59	45 jours	bêta et gamma	intestin, spleen	int
60Co	cobalt-60	5,4 ans	bêta et gamma	corps entier	int
⁶⁵ Zn	zinc-65	144 jours	bêta et gamma	corps entier	int
⁸⁵ Kr(m)	krypton-85m	4,4 heures	bêta et gamma	corps entier	ext
85Kr	krypton-85	11 ans	bêta et gamma	corps entier	ext
87Kr	krypton-87	76 minutes	bêta et gamma	corps entier	ext
88Kr	krypton-88	2,8 heures	bêta et gamma	corps entier	ext
⁸⁶ Rb	rubidium-86	19 jours	bêta et gamma	os, poumon, rein	ext
⁸⁸ Rb	rubidium-88	18 minutes	bêta et gamma	os, poumon, rein	ext
⁸⁹ Rb	rubidium-89	15 minutes	bêta et gamma	os, poumon, rein	ext
⁸⁹ Sr	strontium-89	51 jours	bêta	os, lait, dents	int
90Sr	strontium-90	29 ans	bêta	os, lait, dents	int
91Sr	strontium-91	9,6 heures	bêta et gamma	os, lait, dents	ext
92Sr	strontium-92	2,7 heures	bêta et gamma	os, lait, dents	ext
95Zr	zirconium-95	64 jours	béta et gamma	foie	int
97Zr	zirconium-97	17 heures	bêta et gamma	foie	ext
95Nb	niobium-95	35 jours	bêta et gamma	os, poumon	int
97Nb	niobium-97	1,2 heures	bêta et gamma	os, poumon	ext
99Mo	molybdène-99	2,8 jours	bêta et gamma	tous les organes	ext
¹⁰³ Ru	ruthénium-103	39 jours	bêta et gamma	sang, foie, muscle	int
106Ru	ruthénium-106	1 an	bêta et gamma	sang, foie, muscle	int
110Ag	argent-110	25 sec.	bêta et gamma	pancréas, coeur	ext
111Ag	argent-111	7,5 jours	bêta et gamma	pancréas, coeur	ext
124Sb	antimoine-124	50 jours	bêta et gamma	intestin	ext
125Sb	antimoine-125	2,8 ans	bêta et gamma	intestin	ext
130 _I	iode-130	12 heures	bêta et gamma	thyroïde	ext
131 _I	iode-131	8 jours	bêta et gamma	thyroïde	ext
132 _I	iode-132	2,3 heures	bêta et gamma	thyroïde	ext
133 _I	iode-133	21 heures	bêta et gamma	thyroïde	ext
	•			-	•

134 _I	iode-144	53 minutes	bêta et gamma	thyroïde	ext
135 _I	iode-135	6,6 heures	bêta et gamma	thyroïde	ext
131Xe	xénon-131	stable	aucun	aucun	
¹³³ Xe(m)	xénon-133m	2 jours	gamma	corps entier	ext
¹³³ Xe	xénon-133	5 jours	bêta et gamma	corps entier	ext
¹³⁵ Xe(m)	xénon-135m	15 minutes	gamma	corps entier	ext
135Xe	xénon-135	9 heures	bêta et gamma	corps entier	ext
138Xe	xénon-138	14 minutes	bêta et gamma	corps entier	ext
134Cs	césium-134	2 ans	bêta et gamma	muscle	int
136Cs	césium-136	13 jours	bêta et gamma	muscle	ext
137Cs	césium-137	30 ans	bêta et gamma	muscle	int
138Cs	césium-138	33 minutes	bêta et gamma	muscle	ext
¹⁴⁰ Ba	baryum-140	13 jours	bêta et gamma	OS	int
¹⁴⁰ La	lanthane-140	1,7 jours	bêta et gamma	foie,spleen,foetus	int
¹⁴¹ La	lanthane-141	3,9 heures	bêta et gamma	foie,spleen,foetus	ext
¹⁴² La	lanthane-142	1,5 heures	bêta et gamma	foie,spleen,foetus	ext
¹⁴¹ Ce	cérium-141	31,5 jours	bêta et gamma	foie,spleen,foetus	int
¹⁴³ Ce	cérium-143	1,4 jours	bêta et gamma	foie,spleen,foetus	ext
¹⁴⁴ Ce	cérium-144	285 jours	bêta et gamma	foie,spleen,foetus	int
154Eu	europium-154	8,6 ans	bêta et gamma	os	ext
155Eu	europium-155	4,8 ans	bêta et gamma	os	ext
156Eu	europium-156	15 jours	bêta et gamma	os	ext
181Hf	hafnium-181	42 jours	bêta et gamma	os	ext
234∪	uranium-234	250 000 ans	alpha	poumon, rein	int
235⋃	uranium-235	700000000a	alpha	poumon, rein	int
238U	uranium-238	4,5 milliard a	alpha	poumon, rein	int
238Pu	plutonium-238	88 ans	alpha	os, poumon	int
239Pu	plutonium-239	24 400 ans	alpha	os, poumon	int
240Pu	plutonium-240	6 567 ans	alpha	os, poumon	int
241Pu	plutonium-241	14 ans	bêta	os, poumon	int
²⁴¹ Am	americium-241	433 ans	alpha	os, poumon, rein	int
²⁴² Am	americium-242	16 heures	bêta	os, poumon, rein	int
²⁴² Cm	curium-242	163 jours	alpha	os, poumon, rein	int
²⁴⁴ Cm	curium-244	18 ans	alpha	os, poumon, rein	int

Contributeurs principaux à la dose de rayonnement par ingestion : Sr 90, I 131, Cs 134, Cs 137, Ru 103, Ru 106, Pu 238, Pu 239, et Am 241