The Iran Agreement as a Paradigm for Peace

by Gordon Edwards, Ph.D., CCNR President

April 2 2015

Background:

The Framework Agreement that has been announced in connection with Iran’s nuclear program – if fully implemented – would prevent Iran from producing any nuclear explosive materials for at least 10 or 20 years. More importantly, if the same conditions were accepted by other nations around the world – including the five official Nuclear Weapons States – humankind would be well on its way to a nuclear weapons free world, beginning in the next decade or two.

To understand the unprecedented opportunities presented by this agreement it is helpful to have a basic understanding of the nature of nuclear explosive materials.

All nuclear weapons require a primary nuclear explosive. There are only two materials that are used for that purpose: either Highly Enriched Uranium (HEU) or plutonium of any kind (except plutonium-238).

Highly Enriched Uranium

Highly Enriched Uranium refers to any kind of uranium that has a relatively high percentage (20 percent or more) of uranium-235. Natural uranium -- uranium that is mined from the Earth anywhere in the world -- has only 0.7 percent uranium-235 and 99.3 percent uranium-238. Uranium-238 is not usable as a primary nuclear explosive material. The mix of U-238 and U-235 found in natural uranium is also not nuclear-weapons-usable, because there isn't enough U-235.

Uranium enrichment is a process of gradually removing more and more U-238 from the mix, thereby increasing the concentration of U-235, boosting the percentage of U-235 to 3 percent, or 5 percent, or 20 percent, or 90 percent or more.

Any uranium that is over 90 percent U-235 is called "weapons-grade uranium" and is ideal for making atomic bombs. But in fact any uranium that is over 20 percent U-235 is said to be "highly enriched" HEU and can, in principle, be used to make a nuclear explosive device.

[The uranium fuel for the NRU research reactor at Chalk River is between 19 and 20 percent U-235 -- just below the magic "cut-off" between Low Enriched Uranium (LEU) and Highly Enriched Uranium (HEU). But the NRU reactor also uses weapons-grade uranium "targets" to produce medical isotopes, and is still importing weapons-grade uranium from the USA. In fact Chalk River Labs has an import licence pending for that very purpose, despite the fact that the Canadian government has decided to stop producing medical isotopes using weapons-grade material by October 2016. Alternative production methods exist.]

By agreeing to enrich uranium only to 3.7 percent, the Iranians are foregoing the possibility of producing weapons-grade uranium or even weapons-usable
Plutonium

Plutonium does not exist in nature; it is a uranium derivative that is created inside a nuclear reactor. Specifically, when a uranium-238 atom absorbs a stray neutron inside the reactor it is transmuted into a plutonium-239 atom. Further neutron captures produce other, heavier plutonium isotopes: plutonium-240, -241, -242, et cetera.

All of these reactor-produced plutonium isotopes are usable as a primary nuclear explosive, but the best of the lot (for weapons purposes) is plutonium-239. Any plutonium that has a very high percentage of plutonium-239 is called "weapons-grade plutonium". Nevertheless, all reactor-produced plutonium is perfectly weapons-usable, regardless of the concentration of plutonium-239. [See http://ccnr.org/plute.html for documentation on this point.]

To get the plutonium out of the irradiated nuclear fuel requires "reprocessing" technology. Reprocessing involves dissolving the solid nuclear fuel assemblies in boiling nitric acid, producing large volumes of liquid high-level radioactive waste, and then chemically separating the small percentage of plutonium from the liquid solution. Once the plutonium has been re-solidified it can then be used as a very powerful nuclear explosive material.

Heavy Water Reactors

Commercial nuclear power reactors require a nuclear fuel (usually uranium or plutonium) and a substance called a "moderator" to slow down the neutrons so that the nuclear chain reaction can sustain itself. If ordinary water is used as a moderator, the uranium fuel has to be enriched to about 3 to 5 percent U-235. This is called Low Enriched Uranium (LEU).

However if "heavy water" is used instead of ordinary "light water", the uranium fuel does not have to be enriched at all. Such a reactor, called a Heavy Water reactor, can run perfectly well on natural uranium. In this way plutonium can be produced without the need for any uranium enrichment at all. That plutonium -- when extracted from the nuclear fuel waste by reprocessing technology -- can then be used as a primary nuclear explosive in nuclear weapons of many different kinds.

By agreeing to forego the pursuit of any reprocessing technology, the Iranians agree not to access the plutonium contained in their irradiated nuclear fuel, thereby making it impossible for them to use that plutonium as a primary nuclear explosive.
The Iran Agreement as a Paradigm for Peace
by Gordon Edwards, Ph.D., CCNR President
April 2 2015

In addition, their brand-new Heavy Water Reactor (the Arak reactor) will be modified in design so that it cannot be used to make the ideal kind of plutonium for bomb-making -- the "weapons-grade" plutonium that is exceptionally rich in plutonium-239.

Conclusion

By eliminating the production of HEU, and foregoing reprocessing technology to extract plutonium, Iran effectively closes the door to nuclear weapons of any kind. They cannot produce any primary nuclear explosive materials. Unless, of course, they smuggle it in from somewhere else, or find a way to produce it clandestinely -- but Iran is also willing to accept far-reaching IAEA surveillance on all their nuclear facilities, including unannounced inspections by IAEA authorities, for up to 25 years.

Closing Thoughts

By imposing similar requirements on all nations, we could eliminate the production of nuclear weapons altogether. Then, when nuclear weapons are dismantled and the primary nuclear explosive materials are made inaccessible, a nuclear-weapons free world would be within our grasp.

Unfortunately, the countries who are most insistent in pointing an accusatory finger at Iran -- the USA, the UK, Israel, France, and Britain, along with several "silent bystanders" China, Russia, India, and Pakistan -- all have their own stash of nuclear weapons. The message to Iran is, "Do as we say, not as we do."

World peace and the abolition of nuclear weapons can never be brought about by means of a hypocritical double standard. If nuclear weapons are indeed the greatest existential threat to the continued survival of humanity and other life-forms on this planet, then NO ONE should have them.

If Iran is willing to forego access to nuclear weapons by making it impossible for them to acquire primary nuclear explosive materials, shouldn't all other nations be willing to do the same? And shouldn't the people of the world insist upon it?

As Albert Einstein famously observed, "The splitting of the atom has changed everything, save man's mode of thinking -- and thus we drift toward unparalleled catastrophe." The Iran Framework Agreement could become a paradigm for peace.

See: Why the framework nuclear agreement with Iran is good for both sides
Ariane Tabatabai, Bulletin of Atomic Scientists, April 2, 2015
http://thebulletin.org/bio/ariane-tabatabai

Ariane Tabatabai is a visiting assistant professor in the Security Studies Program at the Georgetown University School of Foreign Service, and an associate in the Belfer Center’s International Security Program and Project on Managing the Atom at Harvard University.