Contaminants radioactifs dans les générateurs de vapeur nucléaires désuets

Voici une liste partielle des contaminants radioactifs qu'on trouve à l'intérieur d'un générateur de vapeur désuet provenant d'un des réacteurs de Bruce. La quantité de radioactivité est exprimée en becquerels par mètre cube; un becquerel correspond à une désintégration radioactive par seconde. (Source : OPG, p. 50) http://www.nwmo.ca/uploads_managed/MediaFiles/539 ReferenceLowandIntermediateWasteInventoryfortheDGR.pdf (p. 50)

pour scientifiques / ingénieurs			pour citoyen(ne)s / politicien(ne)s			
Symbole	Période (a)	Activité	Nom	Demi-vie (a) Quantité	
		(en Bq/m³)		(en	becquerels par mètre	cube)
Ag-108	1.3E+02	2.3E+02	Argent 108	130 a	230	
Am-241	4.3E+02	5.9E+07	Américium 241	430 a	59 000 000	
Am-243	7.4E+03	3.8E+04	Américium 243	7 400 a	38 000	
C-14	5.7E+03	7.6E+07	Carbone 14	5 700 a	76 000 000	
CI-36	3.0E+05	1.4E+04	Chlore 36	300 000 a	14 000	
Cm-244	1.8E+01	1.4E+07	Curium 244	18 a	14 000 000	
Co-60	5.3E+00	1.2E+09	Cobalt 60	5.3 a	1 200 000 000	
Cs-134	2.1E+00	1.9E+06	Césium 134	2.1 a	1 900 000	
Cs-135	2.3E+06	2.2E+01	Césium 135	2 300 000 a	22	
Cs-137	3.0E+01	2.2E+07	Césium 137	30 a	22 000 000	
Eu-152	1.3E+01	1.8E+06	Europium 152	13 a	1 800 000	
Eu-154	8.8E+00	1.6E+07	Europium 154	8.8 a	16 000 000	
Eu-155	5.0E+00	3.0E+07	Europium 156	5 a	30 000 000	
Fe-55	2.7E+00	5.8E+09	Fer 55	2.7 a	5 800 000 000	
I-129	1.6E+07	6.3E+00	Iode 129	16 000 000 a	6.3	
Nb-94	2.0E+04	2.9E+05	Niobium 94	20 000 a	290 000	
Ni-59	7.5E+04	2.0E+05	Nickel 59	75 000 a	200 000	
Ni-63	9.6E+01	2.9E+07	Nickel 63	96 a	29 000 000	
Np-237	2.1E+06	1.8E+03	Neptunium 237	2 100 000 a	1 800	
Pu-238	8.8E+01	1.0E+07	Plutonium 238	88 a	10 000 000	
Pu-239	2.4E+04	1.2E+07	Plutonium 239	24 000 a	12 000 000	
Pu-240	6.5E+03	1.7E+07	Plutonium 240	6 500 a	17 000 000	
Pu-241	1.4E+01	5.5E+08	Plutonium 241	14 a	550 000 000	
Pu-242	3.8E+05	1.7E+04	Plutonium 242	380 000 a	17 000	
Ru-106	1.0E+00	8.4E+08	Ruthénium 106	1 a	840 000 000	
Sb-125	2.8E+00	2.1E+07	Antimoine 125	2.8 a	21 000 000	
Se-79	1.1E+06	7.6E+01	Sélénium 79	1 100 000 a	76	
Sm-151	1 9E+01	7.6E+01	Samarium 151	19 a	76	
Sn-126	2.1E+05	1.2E+02	Étain 126	210 000 a	120	
Sr-90	2.9E+01	1.8E+07	Strontium 90	29 a	18 000 000	
Tc-99	2.1E+05	2.8E+03	Technétium 99	210 000 a	2 800	
U-234	2.5E+05	1.9E+04	Uranium 234	250 000 a	19 000	
U-235	7.0E+08	3.2E+02	Uranium 235	700 000 000 a	320	
U-236	2.3E+07	3.6E+03	Uranium 236	23 000 000 a	24 000	
U-238	4.5E+09	2.4E+04	Uranium 238	4 500 000 000 a	24 000	
Zr-93	1.5E+06	3.8E+02	Zirconium 93	1 500 000 a	380	
SOMMES		en Bq/m3				
À longue période seulement 8.7E+09			(Élément	s à longue vie)	8 700 000 000	
À longue et courte période 1.6E+10			(Tous les ra	adionucléides) ·	16 000 000 000	
λ d · · · · ·	معمد المامية	:- D O) alaumikuaa liam		1

D'après ce document de l'Ontario Power Generation (voir les 2 dernières lignes), il y a dans chaque mètre cube plus de 8 milliards de désintégrations radioactives se produisant chaque seconde en tenant compte uniquement des contaminants radioactifs à longue demi-vie. Une désintégration, c'est l'émission d'un rayon alpha, bêta ou gamma; il y a donc émission de plus de 8 milliards de ces rayons chaque seconde. Cela correspond à l'émission de plus de 28 billions (28 millions de millions) de ces rayons par heure, soit plus de 245 milliards de millions (245 000 000 000 000) de rayons par année!

Exemple frappant : les cinq isotopes de plutonium qu'on trouve dans les générateurs de vapeur. Pour chaque mètre cube, ces cinq isotopes émettent à eux seuls environ 580 millions de rayons alpha chaque seconde. Si on laissait simplement ces générateurs de vapeur sur place pendant mille ans, au bout de cette période les isotopes de plutonium émettraient toujours environ 30 millions de particules alpha par seconde par mètre cube. Le volume combiné des 16 générateurs de vapeur correspond à un volume d'environ 1 000 mètres cubes. Alors faites la multiplication pour obtenir le résultat final.

Gordon Edwards Ph D